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Abstract

A numerical study on mixed convection around a hot spherical particle moving vertically downwards in a still fluid medium has been
made. The flow field is considered to be axisymmetric for the range of Reynolds number (based on the diameter and the settling velocity
of the particle) considered. A third-order accurate upwind scheme is employed to compute the flow field and the temperature distribu-
tion. The form of the wake and the thermal field is analyzed for several values of Grashof number and the Reynolds number. The influ-
ence of buoyancy on drag and the rate of heat transfer are studied. At moderate Reynolds number, recirculating eddy develops in the
downstream of the sphere. With the rise of surface temperature this eddy collapses and the fluid adjacent to the heated surface develops
into a buoyant plume above the sphere. The increase in surface temperature of the sphere delays the flow separation. Our results show
that the drag force and the rate of heat transfer strongly depend on Grashof number for the moderate values of Reynolds number. The
conjugate heat transfer from the moving sphere is also addressed in the present paper. We have compared our computed solution with
several empirical and asymptotic expressions available in the literature and found them in good agreement.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamics of solid particles submerged in a fluid
medium is of interest in many engineering processes, such
as vaporization and condensation of fuel droplets, manu-
facturing systems, fuel spray, coal combustion and motion
of aerosol particles. The hydrodynamic interaction between
suspended particles and the surrounding fluid phase is of
interest also in colloid, polymer, aerosol and physiological
systems. Over the years, several studies have been made on
flow past particles of various shapes, such as rigid sphere,
spheroids, and cylinders. A wide variety of numerical and
analytical methods have been used to obtain solutions for
a broad range of geometric and flow parameters. Most of
the earlier studies have been included in the books by
Happel and Brenner [1] and Clift et al. [2]. Recent works
0017-9310/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2007.05.033

* Corresponding author.
E-mail address: somnath@maths.iitkgp.ernet.in (S. Bhattacharyya).
on numerical and experimental studies on spherical parti-
cles falling in unconfined fluids is discussed in Michaelides
[3]. Several authors have used the finite element/ finite vol-
ume method for direct numerical simulation of particles
sedimentation in 2D and 3D [4,5]. The particle–fluid inter-
action problems with high number of particles are compli-
cated owing to the necessity of geometrically adapted grid
generation. The lattice Boltzmann method (LBM) to simu-
late the particulate motion have proven to be more efficient
in recent years. A detailed discussions on recent models
using LBM have been made by Feng and Michaelides [6].
In this paper, however, we restricted our discussion on
the motion due to a single particle.

The fluid flow past a stationary isolated sphere at vary-
ing Reynolds number has been considered by several
authors experimentally and/or numerically because of its
complex nature. The dye visualization study of Magavey
and Bishop [7] reveals that sphere wake remains steady
symmetric up to Reynolds number 210. Their results show
that the transition from a steady axisymmetric with a
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Nomenclature

Cd drag coefficient, F d=
1
2 qU 2

1pR2

cp specific heat
Cp pressure coefficient, ðp� � p1Þ= 1

2 qU 2
1

g gravitational acceleration
Gr Grashof number, 4gb(Ts � T1)R3/m2

Nu total Nusselt number
Nu local Nusselt number
Pe Peclet number, 2U1R/a
Pr Prandtl number, m/a
r dimensionless radial coordinate
R sphere radius
Re Reynolds number, 2U1R/m
Ri Richardson number, Gr/Re2

t dimensionless time
T dimensionless temperature
u dimensionless radial velocity
U1 free stream velocity
v dimensionless cross-radial velocity

Greek symbols

a thermal diffusivity, j/qcp

ae thermal diffusivity of the solid sphere
b coefficient of thermal expansion, �ðoq

oT Þp=q1
j thermal conductivity
l dynamic viscosity
m kinematic viscosity, l/q
q fluid density
h angular coordinate
w non-dimensional stream function
f non-dimensional vorticity

Subscripts

e inside of the sphere
s surface of the sphere
1 free stream

Superscript

* dimensional quantity
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attached separation bubble to a steady non-axisymmetric
wake consisting of a shortened separation bubble with
two trailing counter-rotating vortices occurs at approxi-
mately at Re = 211. Subsequently, Johnson and Patel [8],
Tomboulides and Orszag [9] and Thomson et al. [10] found
that the sphere wake experiences a transition to a steady
asymmetric wake from a steady axisymmetric wake at a
Reynolds number which lies in the range 210–220. As Rey-
nolds number increases above 270, the flow is three-dimen-
sional and time-dependent with periodic vortex shedding
[11,12]. Bagchi et al. [12] studied the vortex shedding phe-
nomena and its effect on heat transfer from a sphere.
Yun et al. [13] studied the vortical structure behind a
sphere at a subcritical Reynolds number. From those stud-
ies it may be noted that vortex shedding has a difference in
characteristics from that of a circular cylinder. The vortex
shedding from a circular cylinder occurs for Reynolds
number above 40. In case of a circular cylinder, shedding
of vortices occurs from either side of the cylinder where
as, vortices are shed only from the top of the sphere.

Heat transfer from or to a body of spherical or near
spherical shape is a problem of great practical importance.
Acrivos and Taylor [14], Bernner [15], and Dennis et al. [16]
investigated the heat and mass transfer from spherical and
arbitrary shaped bodies at small Peclet numbers in forced
convection dominated regime. In a recent article by Feng
and Michaelides [17] and in the book by Michaelides [3]
provided a detail account on recent advances on the analyt-
ical form of the hydrodynamic force and heat transfer from
spherical particles in slow motion. The steady state natural
convection over a sphere has been studied numerically by
Jia and Gogos [18] for a wide range of Grashof numbers
and who have also made a discussion on some of the pre-
vious work. Their results show that a steady state buoy-
ancy plume with a mushroom-shaped front forms above
the sphere whose length and thickness decrease with
increasing Grashof number. Recently, Yang et al. [19] stud-
ied a similar natural convection problem for a wider range
of Grashof number and Prandtl number.

The convection of heated drops and particles through a
fluid medium induces a disturbance to the host fluid due to
the buoyant force. The mixed convection about a point
heat source is made by Riely and Darke [20] through a
boundary-layer analysis. Subsequently, Riely and Tveiter-
eid [21] made the linear stability analysis due to an axisym-
metric buoyant plume above a point heat source in
presence of a co-flowing vertical stream. Their analysis
shows that the forced flow has a stabilizing effect. The local
vorticity and the local potential energy in the plume are
reduced by the introduction of the external stream. The
sedimentation of solid particles in a hotter or colder fluid
within a vertical channel is studied by Gan et al. [22]. They
made a two-dimensional study with particles represented as
circles. Due to the two-dimensional simulation, vortex
shedding sets-in and wake becomes oscillatory at a much
lower Reynolds number as compared to the case where
the particles are considered to be spherical.

The combined convection due to a solid sphere has been
studied by Nguyen et al. [23] for different values of Rey-
nolds number and Grashof number. There the authors pro-
vided a discussion on some of the related studies based on
either boundary layer solution or solution of two-dimen-
sional Navier–Stokes equations. However, their study did
not provide a detailed analysis on the wake characteristics
and its influence on the heat transfer form the sphere for a
wider range of flow parameters. The experimental studies
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Fig. 1. Flow configuration.
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on the forces experienced by a heated sphere in mixed con-
vection either due to a cross-flow or vertical flows are
reported in the papers by Ziskind et al. [24] and Mograbi
et al. [25] for small values of Reynolds number and Gras-
hof number. Mograbi and Bar-Ziv [26,27] presented a com-
bined numerical and experimental study on steady state
mixed convection around a small spherical particle in the
diameter range of 10–200 for small values of Reynolds,
0–0.3, and Grashof number in the range 0–0.1. They con-
sidered both buoyancy aided and opposed flows and pro-
posed a qualitative expression for the drag force induced
on the particle for low Reynolds number and Grashof
number.

In most practical applications on the dynamics of heated
spherical particles, the Reynolds number and Grashof
number are small but finite. The analysis based on low
Reynolds number and Peclet number may not be valid in
many practical cases. Besides, most of the earlier studies
on natural and mixed convection, as discussed above, con-
centrated on the heat transfer and the forces experienced by
the particle. The form of the wake and the dependence of
drag and heat transfer on flow parameters in mixed convec-
tion regime have not been analyzed in details. The particu-
late matter actively participates in defining the surrounding
flow, which has not been discussed in details in all the pre-
vious studies discussed before.

In this paper, we studied the mixed convection from a
heated sphere for low to moderate range of Reynolds num-
ber (1 6 Re 6 200) and Grashof number (0 6 Gr 6 6 �
104). The influence of buoyancy on heat transfer and the
form of the wake has been investigated. Flow field and heat
transfer is analyzed for different values of the Richardson
number (Ri = Gr/Re2). We investigated the mechanism of
the vortex collapse and subsequent generation of thermal
plume in the near wake. We also considered the case where
the internal thermal field of the sphere is described through
a conjugate model and compared our results with Nguyen
et al. [23].

In the present analysis the Reynolds number is consid-
ered to be below 200, so that the flow may be assumed to
be steady, axisymmetric. Several studies on heated cylinder
exposed to a vertical upward jet reported the breakdown of
vortex shedding and formation of a steady wake by heating
the cylinder [28,29]. From the previous literature discus-
sions we found that the first transition from steady axisym-
metry to steady non-axisymmetry occurs for Re at 200.
Thus it is expected that the heat input to the sphere may
extend the limit of Reynolds number for which a steady
non-axisymmetry develops. Further, the collapse of vortex
through increase of heat, as observed in our study, justifies
the axisymmetric assumption.
2. Mathematical formulation

The flow configuration is shown in Fig. 1. A sphere of
radius R heated to a constant temperature Ts (for isother-
mal case) is considered to be fixed in a vertically upward
(anti-parallel with the gravitational acceleration) uniform
stream U1 with ambient fluid temperature T1 (<Ts). The
positive z-direction is taken as the direction of the external
velocity. We consider the spherical polar coordinate (r,h,/)
with the origin fixed at the center and h = 0 line along the
positive z-direction. The characteristic length is taken to be
R, velocity field is scaled by U1, the pressure by 1

2
qU 2

1 and
the gravitational acceleration by its magnitude g. The flow
field is considered to be axisymmetric with z-axis as the axis
of symmetry. Introducing the stream function w as

u ¼ 1

r2 sin h
ow
oh
; v ¼ � 1

r sin h
ow
or
: ð1Þ

The azimuthal vorticity component f can be expressed as

f ¼ ov
or
þ v

r
� 1

r
ou
oh
: ð2Þ

Thus, the vorticity stream function relation is given by

E2w ¼ �X;

X ¼ fr sin h:
ð3Þ

The non-dimensional vorticity transport equation and the
energy equation with the Boussinesq approximation can
be expressed as
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oX
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r2 sin h
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� ow
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oX
oh

� �

þ 2X

r2 sin2 h
cos h

ow
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� sin h

r
ow
oh

� �

¼ 2

Re
E2X� Gr

Re2
r sin h

oT
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þ cos h

oT
oh

� �
sin h; ð4Þ

oT
ot
þ 1

r2 sin h
ow
oh

oT
or
� ow

or
oT
oh

� �
¼ 2

PrRe
r2T : ð5Þ

The last term in the vorticity transport equation (4) is
due to the buoyancy. The viscous dissipation has been
neglected in the energy equation (5). Here

E2 ¼ o
2

or2
þ 1

r2

o
2

oh2
� cot h

r2

o

oh
;

r2 ¼ o2

or2
þ 1

r2

o2

oh2
þ 2

r
o

or
þ cot h

r2

o

oh
:

For non-isothermal case, the internal temperature field
of the sphere is governed by the following equation:

oT e

ote

¼ r2T e: ð6Þ

The variables are non-dimensionalized as follows:

r ¼ r�

R
; u ¼ u�

U1
; v ¼ v�

U1
; t ¼ t�U1

R
;

X ¼ X�

U1
; w ¼ w�

U1R2
; f ¼ f�R

U1
; T ¼ T � � T1

T s � T1

where an asterisk has been used to indicate dimensional
quantities. In accordance with the Nguyen et al. [23], we
take the time scale inside the sphere as te = t*ae/R

2. The
two time scales are related by t = (Pe//a)te, where /a is
the ratio between the effective diffusivity of the fluid and
solid.

The above governing equations are subjected to the fol-
lowing boundary conditions.

On the surface of sphere

w ¼ 0; T ¼ 1; X ¼ � o2W
or2

; r ¼ 1; 0 6 h 6 p: ð7Þ

Along the axis of symmetry

w ¼ 0;
oT
oh
¼ 0; X ¼ 0; r > 1; h ¼ 0; p: ð8Þ

Along the for field

w ¼ 1

2
r2 sin2 h; T ¼ 0; X ¼ 0; r!1; 0 6 h 6 p:

ð9Þ

The internal temperature Te for the conjugate problem is
considered to assume a finite value at the center of the
sphere and the temperature at the surface of the sphere sat-
isfies the following continuity of temperature and heat flux
conditions:
T ðt; 1; hÞ ¼ T eðte; 1; hÞ;
oT ðt; 1; hÞ

or
¼ /j

oT eðte; 1; hÞ
or

:

ð10Þ
Here /j is the ratio between the heat transfer coefficient
due to fluid and solid. The flow is assumed to start impul-
sively from rest. Thus at t = 0 we assumed w = f = T = 0
and Te = 1 inside the computational domain.

3. Numerical method

A fractional step method, the alternating-direction-
implicit scheme (ADI), has been used for temporal discret-
ization of the vorticity transport equation (4) and the
energy equation (5). At every fractional time step the Pois-
son equation (3) for stream function is solved iteratively
using the successive over relaxation (SOR) technique. In
order to linearize the non-linear system of differential
equations, a quasi-linearization approximation has been
employed. At every time step, we approximate the non-
linear term as

v
oX
oh

� �kþ1

¼ vk oX
oh

� �kþ1

with k P 0, is the iteration index. At the start of the itera-
tion the coefficients of the derivative are evaluated from the
previous time step solution. The spatial derivatives in the
vorticity transport, and energy equation are discretized
through the following third-order accurate upwind scheme:

vi;j
oX
oh

� �
¼ vi;jðXiþ2;j � 2Xiþ1;j þ 9Xi;j � 10Xi�1;j

þ 2Xi�2;jÞ=ð6dhÞ for vi;j positive

vi;j
oX
oh

� �
¼ vi;jð�2Xiþ2;j þ 10Xiþ1;j � 9Xi;j þ 2Xi�1;j

� Xi�2;jÞ=ð6dhÞ for vi;j negative

with i = 3, . . . ,M � 2 and j = 3, . . . ,N � 2 where M � N

are the total grid positions. The diffusion term are discret-
ized through a second-order accurate central difference
scheme:

ðXhhÞi;j ¼ ðXi�1;j � 2Xi;j þ Xiþ1;jÞ=dh2;

ðXrrÞi;j ¼ ðXi;j�1 � 2Xi;j þ Xi;jþ1Þ=dr2:

But at i = 2 or M � 1 and j = 2 or N � 1 this formula is not
applicable. In this case we have used a central difference
formula i.e.,

ðXhÞi;j ¼ ðXiþ1;j � Xi�1;jÞ=2dh;

ðXrÞi;j ¼ ðXi;jþ1 � Xi;j�1Þ=2dr:

A series of test runs were made for determining the opti-
mal grid size and the runs were performed with various grid
sizes for two different lengths of outer boundary (Ld). The
outer boundary is chosen large enough so that the influence
of the boundary condition on the wall shear stress and
local Nusselt number are negligible. Fig. 2a and b shows
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Fig. 2. Grid size effects on local Nusselt number and drag coefficient for Re = 50 and Ri = 0. (a) Nu; (b) Cd.
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the grid size effect at Re = 50 on the local Nusselt number
distribution and drag coefficient. The code was tested for
three different grid sizes, namely 0.025 � 0.02092, 0.0125 �
0.01046 and 0.05 � 0.04184, with the first and second num-
ber being the grid size in the radial and in the cross-radial
direction, respectively. By halving the grid size from
0.025 � 0.02092 to 0.0125 � 0.01046 our result (Fig. 2a
and b) shows that the change in Nu and Cd is almost insig-
nificant. Thus, we find that the grid size 0.0125 � 0.01046 is
optimal.

To validate the present algorithm, we have compared
our results for forced convection (Ri = 0) due to an isother-
mal sphere with the results due to Chang and Maxey [30]
and Bagchi et al. [12]. Fig. 3a and b displays the compari-
son of the surface pressure and surface vorticity distribu-
tion at different Re with the results due to Chang and
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Fig. 3. Comparison of our results for forced convection (Ri = 0) at different Re

(fs) when Ri = 0.
Maxey [30]. Fig. 4 shows the comparison of the drag coef-
ficient and the total Nusselt number for 10 6 Re 6 200
with Bagchi et al. [12] for the case of forced convection
(Ri = 0). We have compared our results for Cd and Nu
for the case of forced convection (Ri = 0) with the empiri-
cal formula provided by Feng and Michaelides [6] in Fig. 4.
Comparisons of total Nusselt number and drag are also
made with Jia and Gogos [18] for the case of natural con-
vection at different values of Grashof number (see Fig. 5a
and b). It is clear from Figs. 3–5 that our results are in total
agreement with all those published results. We made a
comparison of our mixed convection results for the conju-
gate heat transfer case with those of Nguyen et al. [23] for
different values of Reynolds number and Grashof number.
Fig. 6a–c shows the comparison of surface pressure, vortic-
ity and average rate of heat transfer from the sphere for
Re=20
Re=30
Chang & Maxey
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with Chang and Maxey [30]. (a) Surface pressure (Cp); (b) surface vorticity



0 25 50 75 100 125 150 175 200
0

2

4

6

8

10

12

14

Cd
Total Nusselt number
Bagchi et. al.
Empirical results

Fig. 4. Comparison of our results for drag coefficient (Cd) and total
Nusselt number ðNuÞ for forced convection (Ri = 0) at different Re with
Bagchi et al. [12].

S. Bhattacharyya, A. Singh / International Journal of Heat and Mass Transfer 51 (2008) 1034–1048 1039
Re = 80 and Pr = 0.7 at different values of Grashof num-
ber namely, Gr = 105,0,10�5. Our results are in total agree-
ment with the results due to Nguyen et al. [23]. We have
computed the Nusselt number for conjugate heat transfer
case and compared with the asymptotic solution [34] and
computed solutions of Nguyen et al. [23] at different Rey-
nolds number and Peclet number. A detailed discussion
on this is made in next section (Fig. 18a and b).
4. Results and discussion

We have computed the flow field for low to moderate
range of Reynolds number, 1 6 Re 6 200, at different val-
ues of Grashof number (0 6 Gr 6 6 � 104) such that the
Richardson number, Ri assumes values greater than one
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Fig. 5. Comparison of our results for total Nusselt number, drag due to pressur
with the results due to Jia and Gogos [18] at Pr = 0.72 and different Gr. (a) Tota
drag (Cd,l).
as well as less than one. The Richardson number measures
the relative importance of the forced and buoyant effects.
The Prandtl number is taken to be 0.72 for all calculation.
In order to check the time dependency of the flow field we
present the time evolution of the total Nusselt number dis-
tribution at different values of the flow parameters, namely
Re = 200 and Ri = 0,0.5 and 1.5. The results show (Fig. 7)
that the total Nusselt number distribution becomes steady
after a short transition.

The streamlines and vorticity contours at different Rey-
nolds number and Richardson number is presented in Figs.
8 and 9. We found that the flow separation occurs for
Re > 20, when the buoyancy is not considered (Gr = 0).
The size of the recirculation zone increases with the
increase of Reynolds number. The effect of heat input to
the sphere causes the low-density fluid close to the surface
to move upwards, which results in a strong upward
jet along the downstream side of the sphere. This buoyancy
induced upward jet prevents the development of back flow
as is seen for Ri = 0 case. The heated fluid is realigned
upward and rises in a steady axisymmetric buoyant plume.
Fig. 8c shows that the strength of the upward jet increases
as the surface temperature is increased. The collapse of rear
vortex due to density stratification was observed by Torres
et al. [31].

The vorticity contour at different Reynolds number,
Re = 1,150,200 is presented in Fig. 9a–c at different Ri

(=0,0.5,1.5). We find that the strength of the vorticity close
to the surface increases with the rise of surface tempera-
ture. The thickness of the boundary layer reduces as the
sphere temperature is increased. In the buoyancy induced
flow, the vorticity is also generated through the thermally
induced baroclinic vorticity production governed by the
last term in the right-hand side of the vorticity transport
equation (4). We find that the input of heat to the sphere
causes a narrower wake of the sphere.
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e, drag due to viscous force and total drag coefficient in natural convection
l Nusselt number ðNuÞ; (b) total drag (Cd), pressure drag (Cd,p) and viscous
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The surface vorticity fs at different Richardson number
(=0,0.5,1.5) is plotted in Fig. 10 at Re = 200. The occur-
rence of flow separation for Ri = 0 is evident from the fig-
ure. For steady axisymmetric flow, the change in sign of
wall vorticity signifies the separation. The separation point
shifts towards the rear stagnation point as Ri increases. At
Re = 200 and Ri = 1.5 (Gr = 6 � 104), flow does not sepa-
rate. The thickness of the boundary layer reduces with the
rise of surface temperature.

The surface pressure distribution Cp is presented in
Fig. 11a and b. The pressure coefficients are positive in
the upstream face of the sphere, and negative in the down-
stream side. The pressure coefficient is close to one, the
inviscid value, at the forward stagnation point (h = p) at
the Reynolds number 100. The forward stagnation point
pressure deviates from one for lower values of Reynolds
number. The pressure along the downstream side drops
quickly with the rise of surface temperature. A decreasing
pressure is found near the rear stagnation point as Ri
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increases. This drop in surface pressure in the downstream
side is associated with the acceleration in boundary layer
through surface heating. At Ri = 0, the adverse pressure
gradient is strong enough to cause the flow separation.
At Ri = 0.5, a smaller zone of adverse gradient near the
rear stagnation point (h = 0) occurs for Re > 110. When
Ri = 1.5 the additional energy supplied by the buoyancy
forces enable the fluids to overcome the adverse pressure
gradient.
The effect of Reynolds number on the drag coefficient
(Cd) experienced by the sphere is presented in Fig. 12a at dif-
ferent values of Ri = 0,0.5,1.5. The variation of the drag at
lower range of Reynolds number, 1 6 Re 6 10, is shown
separately in Fig. 12b. The drag coefficient decreases with
the increase of Reynolds number, and the variation in drag
coefficient with Reynolds number is much faster for
lower range of Reynolds number. The drag coefficient
depends on the surface pressure distribution and the surface
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Fig. 9. Vorticity contours for axisymmetric flow at different Ri. (a) Re = 1; (b) Re = 150; (c) Re = 200.
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vorticity. The decrease in drag coefficient with increase of
Reynolds number is due to the increase of the wake size.
For the case of forced convection (Ri = 0), Feng and
Michaelides [6] proposed an empirical formula for the drag
coefficient valid for moderate values of Reynolds number as

Cd ¼ 24ð1þ Re2=3=6Þ=Re:
Our results are in excellent agreement with this formula
for Re > 10 (see Fig. 4). However, for Re < 10 our results
deviate from this formula. At the lower range of Reynolds
number, the variation in drag due to the change in surface
temperature is much faster compare to the higher Reynolds
number case. The increase in Richardson number produces
an increment in drag coefficient for the range of Reynolds
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number considered, i.e., 1 6 Re 6 200. Increase in Rich-
ardson number causes an enhancement in drag coefficient.
We have seen before in the vorticity contours that the
increase in surface temperature causes a reduction in wake
length which results into an increment in drag coefficient.

The angle of flow separation (hs) from the surface of the
sphere is presented in Fig. 13 for different values of Rey-
nolds number (20 6 Re 6 200) and Richardson number
(Ri = 0,0.25, 0.5). The separation angle is measured from
the forward stagnation point. The separation point moves
towards the rear stagnation point with the rise of surface
temperature at a fixed Reynolds number. Thus the size of
the wake reduces with the rise of surface heat.

The temperature distribution in the wake is shown in
Fig. 14 for Re = 1, 150 and 200 at Ri = 0, 0.5, 1.5. At
Re = 1 we considered Gr = 0 (Ri = 0), Gr = 0.5 (Ri = 0.5)
and Gr = 1.5 (Ri = 1.5). It is clear from the figures that
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Fig. 11. Surface pressure distribution (Cp) for different values of Re and Ri.
at lower values of Re and Gr the heat transfer is due to con-
duction and the isotherms form a ring-like structure
around the sphere. At higher Reynolds number, the heat
transfer is dominated by the convection effect. The maxi-
mum crowding of the isotherms is seen in the upstream face
of the sphere and the thermal boundary layers grow from
the forward stagnation point. The vorticity and tempera-
ture are transported into the fluid through a similar type
of equation for the case of Ri = 0. As the sphere is heated
it induces a vertical jet, the downstream eddy collapses at
Re = 150, and a thermal plume develops in the down-
stream direction. The plume becomes stronger with the
increase of surface heat as well as Reynolds number. At
Ri = 1.5 and Re = 150 the non-dimensional temperature
within the plume at a distance 13R from the center of the
sphere is .3. Our result at Re = 200 and Gr = 6 � 104

(Ri = 1.5) shows that the temperature in the plume at a dis-
tance 14R from the center of the sphere is not negligible.
The thickness of the thermal boundary layer reduces with
the increase of Grashof number at a fixed value of Rey-
nolds number. At higher values of Grashof number, the
heat leaving the particle is confined to a thin boundary
layer and to the plume above the particle in the mixed con-
vection regime (Ri > 1). It may be noted that Gan et al. [22]
found that the thermal plume, which develops during
migration of a hot particle of circular cross-section in a ver-
tical channel, assumes a serpentine shape for higher range
of Grashof number. This oscillation in plume, as explained
by Gan et al. [22], is due to the presence of vertical wall
which creates a lateral pressure gradient. However, the
Hu and Patankar [32] study suggests that freely rising ther-
mal plume in ambient air may experience the ‘cork-screw’
waves. This instability is due to the buckling of the core
under the action of the shear stress at the surface of the
core [33]. In natural convection over an isothermal sphere,
the formation of steady plume at Gr = 108 has been
reported by Yang et al. [19].
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In most applications it is not necessary to know in
detail the local temperature field, only the overall heat
transfer between the body and fluid needs to be known.
The variation of the total Nusselt number with the
Reynolds number at different values of Richardson num-
ber is presented in Fig. 15a and b. Feng and Michaelides
[6] proposed the following correlation for Nu for the case
of forced convection (Ri = 0) with moderate values of
Reynolds number as
Nu ¼ 0:852ðPrReÞ1=3ð1þ 0:233Re0:287Þ þ 1:3� 0:182Re0:355:
Our computed results are in closed agreement with the
above formula for Ri = 0 (see Fig. 4). For lower range of
Re 6 10, our computed Nu agrees well with the asymptotic
solution proposed by Acrivos and Taylor [14]. The rate of
heat transfer increases monotonically with the increase of
Reynolds number. The influence on Nu due to the incre-
ment of Richardson number is almost negligible for the
lower range of Reynolds number. However, heat transfer
increases at a much faster rate with the increase of Richard-
son number for moderate values of Reynolds number, i.e.,
Re P 50 (see Fig. 17a). At higher values of Reynolds num-
ber, heat transfer is due to convection.

The majority of the study on heated spheres applicable
to analyze the particle-droplet systems in air or liquid is
considered for the lower range of Reynolds number and
Grashof number. The Reynolds number based on
micro-to millimeter-sized particles and the settling velocity
could be of order one and likewise the Grashof number in
the case of air is also of the order one. We computed
results to study the buoyancy effect at lower range of Rey-
nolds number. Fig. 16a and b shows the total Nusselt
number and drag coefficient when Re = 1, 5 and 10 for
0 6 Ri 6 1.5. The drag coefficient at low Reynolds num-
ber, which is mainly due to the viscous force, is enhanced
with the increase of Ri. Based on the weak interaction
between free and forced convection Mograbi and Bar-
Ziv [26,27] proposed an empirical expression for the
hydrodynamic drag on a sphere at low range of Reynolds
number and Grashof number. They compared the empir-
ical formula with the numerical result for Gr = 10�2 and
10�4 with 0 6 Ri 6 1 and found a large discrepancy when
Ri is O(1) at Gr = 10�2. Our results for drag coefficient
for Re P 1, presented in Fig. 16b, does not follow the
empirical formula due to Mograbi and Bar-Ziv [26,27].
Thus, for the range of Gr considered in this paper a weak
non-linearity assumption for the mixed convection flow is
not valid. Increase in Reynolds number produces a large
increment in the average rate of heat transfer. The heat
transfer remains almost invariant due to the change of
Ri at this range of Reynolds number. At lower Reynolds
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Fig. 14. Isothermal contours for the axisymmetric flow at different Ri (=0,0.5,1.5). (a) Re = 1; (b) Re = 150; (c) Re = 200.
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number the heat transfer is due to conduction, and it is
equal to 2 when Stokes flow is considered (Re < 1). An
increment in Ri from 0 to 1.5 in the lower range of Re

implies a small change in the Grashof number. Thus the
trend in Nu at lower values of Re in Fig. 16a is justified.

At the moderate values of Reynolds number
(Re = 50,150,200) the variation of total Nusselt number
and the drag coefficient is presented in Fig. 17a and b.
The drag coefficient increases monotonically with the rise
of surface temperature. This is in contrast with the case
of natural convection (Fig. 5), where the drag coefficient
reduces with the increase of Grashof number. For the case
of natural convection the increase in Grashof number
reduces the pressure drag. The average rate of heat transfer
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increases monotonically with the increase of Grashof num-
ber and Reynolds number. Comparing the results for nat-
ural convection i.e., Fig. 5. We find that at higher Re
(P20) the rate of increment in total Nusselt number with
the increase of Grashof number is found to be lower than
the corresponding rate of increment for the natural convec-
tion case. This is due to the presence of the recirculating
zone in the mixed convection case. Our results show how
that both drag coefficient and total Nusselt number varies
almost linearly with Grashof number. But the rate of the
linear variation is higher at higher Reynolds number for
the Nu.

The steady state Nusselt number for conjugate heat
transfer problem when /a = 1 have been proposed by sev-
eral authors as [34]
Nuconj ¼
1

/jNuint

þ 1

Nuext

� ��1

ð11Þ

with Nuint and Nuext are respectively, the Nusselt number
corresponding to internal and external problems. It may
be noted that for the case of pure diffusion Nuint = 6.58
and the asymptotic expression for Nuext is Nuext = 1 +
[1 + Pe�1]Pe0.333Re0.08. We have made a comparison of
our computed Nuconj with the asymptotic solution at differ-
ent Re in Fig. 18a. A good quantitative agreement of our
computed solution with the asymptotic result given by
Eq. (11) is observed for all Reynolds number considered.
In Fig. 18b, we present the computed Nuconj and its asymp-
totic values at different /j for Re = 20. We also made a
comparison of our results with the computed results due
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to Nugyen et al. [23] and Oliver and Chung [34] and found
them in agreement.
5. Conclusions

In the present study the effects of Reynolds number
(1 6 Re 6 200) and the Richardson number (0 6 Ri 6 1.5)
on the buoyancy aided mixed convection around a hot
spherical particle falling in air is made. The present analysis
presents a clear picture of the mixed convection for low to
moderate values of Reynolds number. Our computed solu-
tions for forced convection case (Ri = 0) are in close agree-
ment with the empirical/analytical solutions proposed by
Acrivos and Taylor [14] and Feng and Michaelides [6].
We have also obtained the Nusselt number for the conju-
gate heat transfer problem and found them in close agree-
ment with the asymptotic solution obtained by other
authors. The main results of this study may be highlighted
as follows:

1. For Re P 20 the flow separates and forms a recircula-
tion zone along the downstream. With the rise of sphere
surface temperature, the separation point slides towards
the rear stagnation point and eventually the vortex col-
lapses to develop a buoyant plume over the sphere. The
strength of the plume enhances with the rise of surface
temperature. The development of the upward jet from
the sphere enhances the drag coefficient and the rate of
heat transfer.
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2. At lower values of Reynolds number the heat transfer is
mostly due to conduction. For moderate values of Rey-
nolds number, the heat transfer is mainly due to convec-
tion. Increment in Reynolds number produces an
increment in Nu for all value of Richardson number.

3. The drag coefficient as well as the heat transfer increases
monotonically with the increase of surface temperature
for moderate values of Reynolds number. Increase in
Re at a fixed Gr increases the wake length and hence
produces a reduction in the drag coefficient.

4. Both Cd and Nu varies almost linearly with the Grashof
number for a fixed value of Re. The rate of increment in
Cd with Ri is much higher at lower range of Re.
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